Linguistic inputs must be syntactically parsable to fully engage the language network
Kauf, C., Kim, H. S., Lee, E. J., Jhingan, N., She, J. S., Taliaferro, M., Gibson, E. & Fedorenko, E. 2024.
tweeprint
A 3.5-minute-long reading-based fMRI localizer for the language network
Tuckute, G.*, Lee, E. J.*, Sathe, A. & Fedorenko, E. 2024.
tweeprint
Elements of World Knowledge (EWoK): A cognition-inspired framework for evaluating basic world knowledge in language models
Ivanova, A.*, Sathe, A.*, Lipkin, B.*, Kumar, U., Radkani, S., Clark, T.H., Kauf, C., Hu, J., Pramod, R.T., Grand, G., Paulun, V., Ryskina, M., Akyürek, E., Wilcox, E., Rashid, N., Choshen, L., Levy, R., Fedorenko, E., Tenenbaum, J.B. & Andreas, J. 2024.
tweeprint
Precision fMRI reveals that the language network exhibits adult-like left-hemispheric lateralization by 4 years of age
Ozernov-Palchik, O.*, O'Brien, A.M.*, Lee, E.J., Richardson, H., Romeo, R., Lipkin, B., Small, H., Capella, J., Nieto-Castañón, A., Saxe, R., Gabrieli, J.D. & Fedorenko, E. 2024.
tweeprint
How to optimize neuroscience data utilization and experiment design for advancing primate visual and linguistic brain models?
Tuckute, G., Finzi, D., Margalit, E., Zylberberg, J., Chung, S., Fyshe, A., Fedorenko, E., Kriegeskorte, N., Yates, J., Grill Spector, K. & Kar, K. 2024.
tweeprint
Comparing plausibility estimates in base and instruction-tuned large language models
Kauf, C., Chersoni, E., Lenci, A., Fedorenko, E., & Ivanova, A. 2024.
Lexicon-level contrastive visual-grounding improves language modeling
Zhuang, C., Fedorenko, E., & Andreas, J. 2024. Findings of the Association for Computational Linguistics ACL 2024, 231-247.
PDF
What we mean when we say semantic: A consensus statement on the nomenclature of semantic memory
Reilly, J., Diaz, M., Pylkkänen, L., Jefferies, E., Poeppel, D., Zubicaray, G., ... & Rodd, J. 2024. Psychonomic Bulletin and Review.
Visual grounding helps learn word meanings in low-data regimes
Zhuang, C., Fedorenko, E., & Andreas, J. 2024. Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 1 (Long Papers), 1311-1329.
PDF
A tripartite structure of pragmatic language abilities: comprehension of social conventions, intonation processing, and causal reasoning
Floyd, S.*, Jouravlev, O.*, Mineroff, Z., Gibson, E.^ & Fedorenko, E.^ 2023.
tweeprint
Intrinsically memorable words have unique associations with their meanings
Tuckute, G.*, Mahowald, K.*, Isola, P., Oliva, A., Gibson, E., & Fedorenko, E. 2023.
tweeprint
Constructed languages are processed by the same brain mechanisms as natural languages
Malik-Moraleda, S., Taliaferro, M., Shannon, S., Jhingan, N., Swords, S., Peterson, D. J., Frommer, P., Okrand, P., Sams, J., Cardwell, R., Freeman, C. & Fedorenko, E. 2023.
tweeprint
Functional characterization of the language network of polyglots and hyperpolyglots with precision fMRI
Malik-Moraleda, S.*, Jouravlev. O.*, Mineroff, Z., Cucu, T., Taliaferro, M., Mahowald, K., Blank, I. & Fedorenko. E. 2024. Cerebral Cortex, 34(3), bhae049. DOI: 10.1093/cercor/bhae049. PMID: 38466812. PMC10928488.
PDF | Supplementary Information | tweeprint
The language network reliably ‘tracks’ naturalistic meaningful non-verbal stimuli
Sueoka, Y.*, Paunov, A.*, Tanner, A., Blank, I., Ivanova, A. A.^, Fedorenko, E.^ 2024. Neurobiology of Language, 5(2), 385-408. DOI: 10.1162/nol_a_00135. PMID: 38911462. PMC11192443.
PDF | Supplementary Information | tweeprint
Artificial neural network language models align neurally and behaviorally with humans even after a developmentally realistic amount of training
Hosseini, E., Schrimpf, M., Zhang, Y., Bowman, S., Zaslavsky, N. & Fedorenko, E. 2024. Neurobiology of Language, 5(1), 43-63. DOI: 10.1162/nol_a_00137. PMID: 38645622. PMC11025646.
PDF | Supplementary Information | tweeprint
Preserved functional organization of human auditory cortex in individuals missing one temporal lobe from infancy
Regev, T. I.*, Lipkin, B.*, Boebinger, D. L., Paunov, A. M., Kean, H., Norman-Haignere, S. V., & Fedorenko, E. 2024. iScience, 27(9), 110548. DOI: 10.1016/j.isci.2024.110548. PMID: 36711687. PMC9882328.
PDF | Supplementary Information | tweeprint
Neural populations in the language network differ in the size of their temporal receptive windows
Regev, T. I.*, Casto, C.*, Hosseini, E., Adamek, M., Ritaccio, A. L., Willie, J. T., Brunner, P., & Fedorenko, E. Nature Human Behavior. DOI: 10.1038/s41562-024-01944-2.
PDF | Supplementary Information | tweeprint
Reply to ‘The language network is topographically diverse and driven by rapid syntactic inferences’
Fedorenko, E., Ivanova, A. A. & Regev, T. I. 2024. Nature Reviews Neuroscience. DOI: 10.1038/s41583-024-00853-7. PMID: 39123047.
PDF
Language is primarily a tool for communication rather than thought
Fedorenko, E., Piantadosi, S.T. & Gibson, E.A.F. 2024. Nature, 630, 575–586. DOI: 10.1038/s41586-024-07522-w. PMID: 38898296.
PDF | Supplementary Information | tweeprint
The language network as a natural kind within the broader landscape of the human brain
Fedorenko, E., Ivanova, A.A. & Regev, T.I. 2024. Nature Reviews Neuroscience, 25, 289–312. DOI: 10.1038/s41583-024-00802-4. PMID: 38609551.
PDF | Supplementary Information | tweeprint
Language in brains, minds, and machines
Tuckute, G., Kanwisher, N., & Fedorenko, E. 2024. Annual Review of Neuroscience, 47. DOI: 10.1146/annurev-neuro-120623-101142.
PDF | Supplementary Information | tweeprint
Driving and suppressing the human language network using large language models
Tuckute, G., Sathe, A., Srikant, S., Taliaferro, M., Wang, M., Schrimpf, M., Kay, K., & Fedorenko, E. 2024. Nature Human Behavior, 8(3), 544-561. DOI: 10.1038/s41562-023-01783-7. PMID: 38172630.
PDF | Supplementary Information | tweeprint
Large language models implicitly learn to straighten neural sentence trajectories to construct a predictive representation of natural language
Hosseini, E., & Fedorenko, E. 2023. Advances in Neural Information Processing Systems, 36, 43918–43930. DOI: 10.48550/arXiv.2311.04930.
PDF | Supplementary Information | tweeprint
WhisBERT: Multimodal text-audio language modeling on 100M words
Wolf, L., Tuckute, G., Kotar, K., Hosseini, E., Regev, T., Wilcox, E., & Warstadt, A. 2023. Proceedings of the BabyLM Challenge at the 27th Conference on Computational Natural Language Learning, 2 (BabyLM Challenge), 253-258.
PDF
Let’s move forward: Image-computable models and a common model evaluation scheme are prerequisites for a scientific understanding of human vision
DiCarlo, J.J., Yamins, D.L., Ferguson, M.E., Fedorenko, E., Bethge, M., Bonnen, T., & Schrimpf, M. 2023. Behavioral and Brain Sciences, 46, e390. DOI: 10.1017/S0140525X23001607. PMID: 38054303.
PDF
Event knowledge in large language models: The gap between the impossible and the unlikely
Kauf, C.*, Ivanova, A. A.*, Rambelli, J., Chersoni, E., She, J. S., Chowdhury, Z., Fedorenko, E. & Lenci, A. 2023. Cognitive Science, 47(11), p.e13386. DOI: 10.1111/cogs.13386. PMID: 38009752.
PDF | Supplementary Information | tweeprint
The language network is not engaged in object categorization
Benn, Y.*, Ivanova, A. A.*, Clark, O., Mineroff, Z., Seikus, C., Silva, J. S., Varley, R.^ & Fedorenko, E.^ 2023. Cerebral Cortex, 33(19), 10380–10400. 10.1093/cercor/bhad289. PMID: 37557910. PMC10545444.
PDF | Supplementary Information | tweeprint
Lexical semantic content, not syntactic structure, is the main contributor to ANN-brain similarity of fMRI responses in the language network
Kauf, C.*, Tuckute, G.*, Levy, R., Andreas, J., & Fedorenko E. 2023. Neurobiology of Language, 5(1), 7-42. DOI: 10.1162/nol_a_00116. PMID: 38645614. PMC11025651.
PDF | Supplementary Information | tweeprint
Non-literal language processing is jointly supported by the language and Theory of Mind networks: Evidence from a novel meta-analytic fMRI approach
Hauptman, M., Blank, I.^, & Fedorenko, E.^ 2023. Cortex, 162, 96-114. DOI: 10.1016/j.cortex.2023.01.013. PMID: 37023480. PMC10210011.
PDF | Supplementary Information | tweeprint
The human language system, including its inferior frontal component in “Broca’s area”, does not support music perception
Chen, X., Affourtit, J., Ryskin, R., Regev, T. I., Norman-Haignere, S., Jouravlev, O., Malik-Moraleda, S., Kean, H., Varley, R.^ & Fedorenko, E.^ 2023. Cerebral Cortex, 33(12), 7904-7929. DOI: 10.1093/cercor/bhad087. PMID: 37005063. PMC10505454.
PDF | Supplementary Information | tweeprint
No evidence of theory of mind reasoning in the human language network
Shain, C.*, Paunov, A.*, Chen, X.*, Lipkin, B., & Fedorenko, E. 2023. Cerebral Cortex, 33(10) 6299-6319. DOI: 10.1093/cercor/bhac505. PMID: 36585774. PMC10183748.
PDF | Supplementary Information | tweeprint
Mahowald Fedorenko (2016) Online Supplement: Large-scale fMRI datasets of functional ‘localizers’ for the language and Multiple Demand networks extend the evidence for reliable individual …
Lipkin, B., Affourtit, J., Small, H., Mineroff, Z., Nieto-Castañón & Fedorenko, E. 2023. DOI: 10.6084/m9.figshare.22183564.
Lipkin et al. (2022) Online Supplement: Probabilistic atlases for the multiple demand (MD) and theory of mind (ToM) networks based on large-scale precision localizers
Lipkin, B., Blank, I. & Fedorenko, E. 2023. DOI: 10.6084/m9.figshare.22306348.
Intact reading ability in spite of a spatially distributed visual word form ‘area’ in an individual born without the left superior temporal lobe
Li, J., Fedorenko, E. & Saygin, Z. 2022. Cognitive Neuropsychology, 39(5-8), 249-275. DOI: 10.1080/02643294.2023.2164923. PMID: 36653302. PMC10213128.
PDF | Supplementary Information | tweeprint
Causal contributions of the domain-general (multiple demand) and the language-selective brain networks to perceptual and semantic challenges in speech comprehension
MacGregor, L., Gilbert, R., Balewski, Z., Mitchell, D., Erzinclioglu, S., Rodd, J., Duncan, J., Fedorenko, E., Davis, M. 2022. Neurobiology of Language, 3(4), 665-698. DOI: 10.1162/nol_a_00081. PMID: 36742011. PMC9893226.
PDF | Supplementary Information
Precision fMRI reveals that the language-selective network supports both phrase-structure building and lexical access during language production
Hu, J.*, Small, H.*, Kean, H., Takahashi, A., Zekelman, L., Kleinman, D., Ryan, E., Nieto-Castañón, A., Ferreira, V. & Fedorenko, E. 2022. Cerebral Cortex, 33(8), 4384-4404. DOI: 10.1093/cercor/bhac350. PMID: 36130104. PMC10110436.
PDF | Supplemental Information | tweeprint
Probabilistic atlas for the language network based on precision fMRI data from >800 individuals
Lipkin, B., Tuckute, G., Affourtit, J., Small, H., Mineroff, Z., Kean, H., Jouravlev, O., Rakocevic, L., Pritchett, B., Siegelman, M., Hoeflin, C., Pongos, A., Blank, I., Kline, M., Ivanova, A. A., Shannon, S., Sathe, A., Hoffman, M., Nieto-Castañón, A., & Fedorenko, E. 2022. Nature Scientific Data, 9(1), 529. DOI: 10.1038/s41597-022-01645-3. PMID: 36038572. PMC9424256.
PDF | Supplementary Information | tweeprint
An investigation across 45 languages and 12 language families reveals a universal language network
Malik-Moraleda, S.*, Ayyash, D.*, Gallée, J., Affourtit, J., Hoffmann, M., Mineroff, Z., Jouravlev, O. & Fedorenko, E. 2022. Nature Neuroscience, 25(8), 1014-1019. DOI: 10.1038/s41593-022-01114-5 . PMID: 35856094. PMC10414179.
PDF | Supplementary Information | tweeprint
Differential tracking of linguistic vs. mental state content in naturalistic stimuli by language and Theory of Mind (ToM) brain networks
Paunov, A., Blank, I., Jouravlev, O., Mineroff, Z., Gallée, J., & Fedorenko, E. 2022. Neurobiology of Language, 3(3), 413-440. DOI: 10.1162/nol_a_00071. PMID: 37216061. PMC10158571.
PDF | Supplementary Information
Semantic projection recovers rich human knowledge of multiple object features from word embeddings
Grand, G.*, Blank, I.*, Pereira, F.^ & Fedorenko, E.^ 2022. Nature Human Behavior, 6(7), 975-987. DOI: 10.1038/s41562-022-01316-8. PMID: 35422527. PMC10349641.
PDF | Supplementary Information | tweeprint
Convergent representations of computer programs in human and artificial neural networks
Srikant, S.*, Lipkin, B.*, Ivanova, A. A., Fedorenko, E. & O'Reilly, U. M. 2022. Advances in Neural Information Processing Systems, 35, 18834-18849.
PDF | Supplementary Information
SentSpace: Large-scale benchmarking and evaluation of text using cognitively motivated lexical, syntactic, and semantic features
Tuckute, G.*, Sathe, A.*, Wang, M., Yoder, H., Shain, C., & Fedorenko, E. 2022. Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: System Demonstrations, 99-113. DOI: 10.18653/v1/2022.naacl-demo.11.
PDF | tweeprint
Lipkin et al. (2022) LanA dataset
Lipkin, B. & Fedorenko, E. 2022. DOI: 10.6084/m9.figshare.20425209.v1.
Frontal language areas do not emerge in the absence of temporal language areas: A case study of an individual born without a left temporal lobe
Tuckute, G., Paunov, A., Kean, H., Small, H., Mineroff, Z., Blank, I., & Fedorenko, E. 2022. Neuropsychologia, 169, 108184. DOI: 10.1016/j.neuropsychologia.2022.108184. PMID: 35183561.
PDF | Supplementary Information | tweeprint
The Natural Stories corpus: A reading-time corpus of English texts containing rare syntactic constructions
Futrell, R., Gibson, E., Tily, H., Blank, I., Vishnevetsky, A., Piantadosi, S., & Fedorenko, E. 2021. Language Resources and Evaluation, 55(1), 63-77. DOI: 10.1007/s10579-020-09503-7. PMID: 34720781. PMC8549930.
PDF
The domain-general multiple demand network is more active in early balanced bilinguals than monolinguals during executive processing
Malik-Moraleda, S., Cucu, T., Lipkin, B. & Fedorenko, E. 2021. Neurobiology of Language, 2(4), 647-664. DOI: 10.1162/nol_a_00058. PMID: 37214622. PMC10158558.
PDF | Supplementary Information | tweeprint
The neural architecture of language: Integrative modeling converges on predictive processing
Schrimpf, M., Blank, I.*, Tuckute, G.*, Kauf, C.*, Hosseini, E., Kanwisher, N., Tenenbaum, J.^ & Fedorenko, E.^ 2021. PNAS, 118(45), e2105646118. DOI: 10.1073/pnas.2105646118. PMID: 34737231. PMC8694052.
PDF | Supplementary Information | tweeprint
Similarity of computations across domains does not imply shared implementation: The case of language comprehension
Fedorenko, E. & Shain, C. 2021. Current Directions in Psychological Science, 30(6), 526-534. DOI: 10.1177/09637214211046955. PMID: 35295820. PMC8923525.
PDF
The early origins and the growing popularity of the individual-subject analytic approach in human neuroscience
Fedorenko, E. 2021. Current Opinion in Behavioral Sciences, 40, 105-112. DOI: 10.1016/j.cobeha.2021.02.023.
PDF
Incremental language comprehension difficulty predicts activity in the language network but not the multiple demand network
Wehbe, L., Blank, I. A., Shain, C., Futrell, R., Levy, R., von der Malsburg, T., Smith, N., Gibson, E. & Fedorenko, E. 2021. Cerebral Cortex, 31(9), 4006-4023. DOI: 10.1093/cercor/bhab065. PMID: 33895807. PMC8328211.
PDF | Supplementary Information | tweeprint
Breakdowns in informativeness of naturalistic speech production in primary progressive aphasia
Gallée, J., Cordella, C., Fedorenko, E., Hochberg, D., Touroutoglou, A., Quimby, A. & Dickerson, B. 2021. Brain Sciences, 11(2), 130. DOI: 10.3390/brainsci11020130. PMID: 33498260. PMC7909266.
PDF
The language network is recruited but not required for non-verbal semantic processing
Ivanova, A. A., Mineroff, Z., Zimmerer, V., Kanwisher, N., Varley, R. & Fedorenko, E. 2021. Neurobiology of Language, 2(2), 176-201. DOI: 10.1162/nol_a_00030. PMID: 37216147. PMC10158592.
PDF | Supplementary Information | tweeprint
Comprehension of computer code relies primarily on domain-general executive brain regions
Ivanova, A. A., Srikant, S., Sueoka, Y., Kean, H., Dhamala, R., O'Reilly, U. M., Bers M. & Fedorenko, E. 2020. eLife, 9, e58906. DOI: 10.7554/eLife.58906. PMID: 33319744. PMC7738192.
PDF | Supplementary Information | tweeprint
Reduced language lateralization is a robust marker of the broader autism phenotype
Jouravlev, O., Kell, A., Mineroff, Z., Haskins, AJ, Ayyash, D., Kanwisher, N. & Fedorenko, E. 2020. Autism Research, 13(10), 1746-1761. DOI: 10.1002/aur.2393. PMID: 32935455.
PDF
fMRI reveals language-specific predictive coding during naturalistic sentence comprehension
Shain, C.*, Blank, I.*, Van Shijndel, M., Schuler, W. & Fedorenko, E. 2020. Neuropsychologia, 138, 107307. DOI: 10.1016/j.neuropsychologia.2019.107307. PMID: 31874149. PMC7140726.
PDF | Supplementary Information
Composition is the core driver of the language-selective network
Mollica, F.*, Siegelman, M.*, Diachek, E., Piantadosi, S., Mineroff, Z., Futrell, R., Kean H., Qian, P. & Fedorenko, E. 2020. Neurobiology of Language, 1(1), 104-134. DOI: 10.1162/nol_a_00005. PMID: 36794007. PMC9923699.
PDF
Gene expression correlates of the cortical network underlying sentence processing
Kong, X., Tzourio-Mazoyer, M., Joliot, M., Fedorenko, E., Liu, J., Fisher, S.E. & Francks, C. 2020. Neurobiology of Language, 1(1), 77-103. DOI: 10.1162/nol_a_00004. PMID: 36794006. PMC9923707.
PDF
Do domain-general executive resources play a role in linguistic prediction? Re-evaluation of the evidence and a path forward
Ryskin, R., Levy, R. & Fedorenko, E. 2020. Neuropsychologia, 136, 107258. DOI: 10.1016/j.neuropsychologia.2019.107258. PMID: 31730774.
PDF
Discourse-level comprehension engages medial frontal Theory of Mind brain regions even for expository texts
Jacoby, N. & Fedorenko, E. 2020. Language, Cognition and Neuroscience, 35(6). 780-796. DOI: 10.1080/23273798.2018.1525494. PMID: 32984430. PMC7518647.
PDF
Towards robust functional neuroimaging genetics of cognition
Uddén, J., Hultén, A., Bendtz, K., Mineroff, Z., Kucera, K.S., Vino, A., Fedorenko, E., Hagoort, P. & Fisher, S. 2019. Journal of Neuroscience, 39(44), 8778-8787. DOI: 10.1523/JNEUROSCI.0888-19.2019. PMID: 31570534. PMC6820208.
PDF
Speech-accompanying gestures are not processed by the language processing mechanisms
Jouravlev, O., Zheng, D., Balewski, Z., Pongos, A., Levan, Z., Goldin-Meadow, S. & Fedorenko, E. 2019. Neuropsychologia, 132, 107132. DOI: 10.1016/j.neuropsychologia.2019.107132. PMID: 31276684. PMC6708375.
PDF
An attempt to conceptually replicate the dissociation between syntax and semantics during sentence comprehension
Siegelman, M., Blank, I., Mineroff, Z. & Fedorenko, E. 2019. Neuroscience, 413, 219-229. DOI: 10.1016/j.neuroscience.2019.06.003. PMID: 31200104. PMC6661197.
PDF
The language of programming: A cognitive perspective
Fedorenko, E., Ivanova, A. A., Dhamala, R. & Bers, M. 2019. Trends in Cognitive Sciences, 23(7), 525-528. DOI: 10.1016/j.tics.2019.04.010. PMID: 31153775.
PDF
Functionally distinct language and Theory and Mind networks are synchronized at rest and during language comprehension
Paunov, A., Blank, I. & Fedorenko, E. 2019. Journal of Neurophysiology, 121(4), 1244-1265. DOI: 10.1152/jn.00619.2018. PMID: 30601693. PMC6485726.
PDF
Tracking co-listeners’ knowledge states during language comprehension
Jouravlev, O., Schwarz, R., Ayaash, D., Mineroff, Z., Gibson, E. & Fedorenko, E. 2019. Psychological Science, 30(1), 3-19. DOI: 10.1177/0956797618807674. PMID: 30444681. PMC6344950.
PDF | Supplementary Information
A robust dissociation among the language, multiple demand, and default mode networks: Evidence from inter-region correlations in effect size
Mineroff, Z.*, Blank, I.*, Mahowald, K. & Fedorenko, E. 2018. Neuropsychologia, 119, 501-511. DOI: 10.1016/j.neuropsychologia.2018.09.011. PMID: 30243926. PMC6191329.
PDF
Remaining puzzles about morpheme production in the posterior temporal lobe
Fedorenko, E., Williams, Z.M. & Ferreira, V.S. 2018. Neuroscience, 392, 160-163. DOI: 10.1016/j.neuroscience.2018.09.032. PMID: 30278250.
PDF
High-level language processing regions are not engaged in action observation or imitation
Pritchett, B., Hoeflin, C., Koldewyn, K., Dechter, E. & Fedorenko, E. 2018. Journal of Neurophysiology, 120(5), 2555-2570. DOI: 10.1152/jn.00222.2018. PMID: 30156457. PMC6295536.
PDF
Deep phenotyping of speech and language skills in 16p11.2 deletion syndrome
Mei, C., Fedorenko, E., Amor, D., Boys, A., Hoeflin, C., Carew, P., Burgess, T., Fisher, S. & Morgan, A. 2018. European Journal of Human Genetics, 26(5), 676-686. DOI: 10.1038/s41431-018-0102-x. PMID: 29445122. PMC5945616.
PDF | Supplementary Information
Toward a universal decoder of linguistic meaning from brain activation
Pereira, F., Lou, B., Pritchett, B., Ritter, S., Gershman, S.J., Kanwisher, N., Botvinick, M. & Fedorenko, E. 2018. Nature Communications, 9(1), 963. DOI: 10.1038/s41467-018-03068-4. PMID: 29511192. PMC5840373.
PDF | Supplementary Information
Fluid intelligence is supported by the multiple-demand system not the language system
Woolgar, A., Duncan, J., Manes, F. & Fedorenko, E. 2018. Nature Human Behavior, 2(3), 200-204. DOI: 10.1038/s41562-017-0282-3. PMID: 31620646. PMC6795543.
PDF | Supplementary Information
Functional characterization of the human speech articulation network
Basilakos, A., Smith, K., Fillmore, P., Fridriksson, J. & Fedorenko, E. 2018. Cerebral Cortex, 28(5), 1816-1830. DOI: 10.1093/cercor/bhx100. PMID: 28453613. PMC5907347.
PDF | Supplementary Information
Don’t underestimate the benefits of being misunderstood
Gibson, E., Tan, C., Futrell, R., Mahowald, K., Konieczny, L., Hemforth, B. & Fedorenko, E. 2017. Psychological Science, 28(6), 703-712. DOI: 10.1177/0956797617690277. PMID: 28394708.
PDF | Supplementary Information
Can neuroimaging help aphasia researchers? Addressing generalizability, idiosyncrasy, and interpretability
Blank, I., Kiran, S. & Fedorenko, E. 2017. Cognitive Neuropsychology, 34(6), 377-393. DOI: 10.1080/02643294.2017.1402756. PMID: 29188746. PMC6157596.
PDF
Domain-general brain regions do not track linguistic input as closely as language-selective regions
Blank, I. & Fedorenko, E. 2017. Journal of Neuroscience, 37(41), 9999-10011. DOI: 10.1523/JNEUROSCI.3642-16.2017. PMID: 28871034. PMC5637122.
PDF
An asymmetrical relationship between verbal and visual thinking: Converging evidence from behavior and fMRI
Amit, E., Hoeflin, C., Hamzah, N. & Fedorenko, E. 2017. NeuroImage, 152, 619-627. DOI: 10.1016/j.neuroimage.2017.03.029. PMID: 28323162. PMC5448978.
PDF
A new fun and robust version of an fMRI localizer for the fronto-temporal language system
Scott, T., Gallée, J. & Fedorenko, E. 2017. Cognitive Neuroscience, 8(3), 167-176. DOI: 10.1080/17588928.2016.1201466. PMID: 27386919.
PDF | Supplementary Information
Infinitely productive language can arise from chance under communicative pressure
Piantadosi, S. & Fedorenko, E. 2017. Journal of Language Evolution, 2(2), 141-147. DOI: 10.1093/jole/lzw013.
PDF
A neural correlate of the construction of sentence meaning
Fedorenko, E., Scott, T., Brunner, P., Coon, W.G., Pritchett, B., Schalk, G. & Kanwisher, N. 2016. PNAS, 113(41), E6256-E6262. DOI: 10.1073/pnas.1612132113. PMID: 27671642. PMC5068329.
PDF | Supplementary Information
Functional network dynamics of the language system
Chai, L., Mattar, M., Blank, I., Fedorenko, E. & Bassett, D. 2016. Cerebral Cortex, 26(11), 4148-4159. DOI: 10.1093/cercor/bhw238. PMID: 27550868. PMC5066829.
PDF | Supplementary Information
Processing temporal presuppositions: An ERP study
Jouravlev, O., Stearns, L., Bergen, L., Eddy, M., Gibson, E. & Fedorenko, E. 2016. Language, Cognition and Neuroscience, 31(10), 1245-1256. DOI: 10.1080/23273798.2016.1209531.
PDF